
Financial Economics
4 Risky Decisions

LEC, SJTU

2024 Winter

LEC, SJTU Financial Economics 2024 Winter 1 / 44



Overview

von Neumann
Morgenstern

measures of risk
aversion, HARA class

von Neumann
Morgenstern

measures of risk
aversion, HARA class

Finance economy
SDF, CCAPM,

term structure

Data and
the Puzzles

Empirical
resolutions

Theoretical
resolutions

Arrow-Debreu
general equilibrium,

welfare theorem,
representative agent

Radner economies
real/nominal assets,

market span,
risk-neutral prob.,

representative good

LEC, SJTU Financial Economics 2024 Winter 2 / 44



Risky Decisions

Probabilities and lotteries
Expected Utility Theory
Measures of risk preference
Specialized class of utility functions

LEC, SJTU Financial Economics 2024 Winter 3 / 44



A very special ingredient: probabilities

We defined commodities as being contingent on the state of the
world- means that in principle we also cover decisions involving risk
But risk has a special additional structure which other situations do
not have: probabilities
We have not explicitly made use of probabilities so far

▶ The probabilities do affect preferences over contingent commodities,
but so far we have not made this connection explicit

Theory of decision-making under risk exploits this structure to get
predictions about behavior of decision-makers
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The St Petersburg Paradox

Suppose someone offers you this gamble:
▶ ”I have a fair coin here. I’ll flip it, and if it’s tail I pay you $1 and the

gamble is over. If it’s head, I’ll flip again. If it’s tail then, I pay you $2,
if not I’ll flip again. With every round, I double the amount I will pay
to you if it’s tail.”

Sounds like a good deal. After all, you can’t loose. So here’s the
question:
How much are you willing to pay to take this gamble?

LEC, SJTU Financial Economics 2024 Winter 5 / 44



The expected value of the gamble

The gamble is risky because the payoff is random. So, according to
intuition, this risk should be taken into account, meaning, I will pay
less than the expected payoff of the gamble
So, if the expected payoff is X, I should be willing to pay at most X,
possibly minus some risk premium
BUT, the expected payoff of this gamble is INFINITE!
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Infinite expected value

With probability 1/2 you get $1
With probability 1/4 you get $2
With probability 1/8 you get $4
.....
The expected payoff is the sum of these payoffs, weighted with their
probabilities, so

∞∑
t=1

(
1

2

)t

· 2t−1 =

∞∑
t=1

1

2
= ∞
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An infinitely valuable gamble?
I should pay everything I own and more to purchase the right to take
this gamble!
Yet, in practice, no one is prepared to pay such a high price
Why?
Even though the expected payoff is infinite, the distribution of payoffs
is not attractive: With 93% probability we get $8 or less, with 99%
probability we get $64 or less
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What should we do?

How can we decide in a rational fashion about such gambles (or
investments)?
Bernoulli suggests that large gains should be weighted less. He
suggests to use the natural logarithm. [Cremer, another great
mathematician of the time, suggests the square root.]

∞∑
t=1

(
1

2

)t

· ln(2t−1) = ln(2) < ∞

Bernoulli would have paid at most eln(2) = 2 to participate in this
gamble
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Lotteries

Suppose you are driving to work at Shanghai Jiao Tong University
from Fudan

▶ If you arrive on time prize (payoff)= x (prob.=95%)
▶ If there is a traffic jam (prob=4.8%) you get nothing
▶ If you have an accident (prob =0.2%) you get no payoff but also have

to spend to repair your car.
▶ This lottery can be written as: [+x, 0.95; 0, 0.048;−y, 0.02]

Let us consider a finite set of outcomes: [x1, . . . , xS ]

The xi’s can be consumption bundles or in our case money - the xi’s
themselves involve no uncertainty
We define a lottery as:

[x1, π1; . . . ;xS , πS ], πs ≥ 0,

S∑
s=1

πs = 1
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Preferences over Lotteries

Let us call the set of all such lotteries as L- we now assume that
agents have preferences over this set
So agents have a preference relation ≻ on L that satisfies the usual
assumptions of ordinal utility theory
Assumptions imply that we can represent such preferences by a
continuous utility function V : L → R so that

L ≻ L′ ⇐⇒ V(L) > V(L′)

We also assume that people prefer more to less (in our case more
money to less):

π1 > 0, a > 0 ⇒ V([x1, π1;x2, π2]) < V([x1 + a, π1;x2, π2])
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What is risk aversion?
The expected value of a lottery is:

E[L] =

S∑
s=1

πsxs

Consider the lottery [E(L), 1]- this lottery pays E(L) with certainty.
We call this degenerate lottery
We define attitude to risk with reference to this lottery and how
agents prefer outcomes relative to this lottery

▶ Risk Neutral: V(L) = V([E(L), 1]) or the risk in the lottery L-
variation in payoff between states is irrelevant to the agent- the agent
cares only about the expectation of the prize

▶ Risk Averse: V(L) < V([E(L), 1]) –here the agent would rather have
the average prize E(L) for sure than bear the risk in the lottery L

A risk averse agent is willing to give up some wealth on average in
order to avoid the randomness of the prize of L
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Certainty Equivalent

Let V be some utility function on (set of all lotteries) and let L be
some lottery with expected prize E(L)

The certainty equivalent of L under V is defined as
V([CE(L), 1]) = V(L).
CE(L) is the level of non-random wealth that yields the same utility
as the lottery L

The risk premium is the difference between the expected prize of the
lottery and its certainty equivalent: RP (L) = E(L)− CE(L)

All of this is the same as ordinal utility theory and we have not used
the additional structure in the probabilities- we now do this
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The utility function V

In order to be able to draw indifference curves we will restrict
attention to lotteries with only two possible outcomes, [x1, π1;x2, π2]
Furthermore, we will also fix the probabilities (π1, π2), so that a
lottery is fully described simply by the two payoffs (x1, x2). So a
lottery is just a point in the plane
From the ordinal utility function V we define a new function V that
takes only the payoffs as an argument, V(x1, x2) = V([x1, π1;x2, π2])

V is very much like a utility function over two goods that we have
used in Lecture 2. This makes it amenable to graphical analysis
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Indifference curves

x1

x2

45

°

Any point in this plane is a particular lottery
Where is the set of risk-free lotteries?
If x1 = x2, then the lottery contains no risk
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Indifference curves

π

Where is the set of lotteries with expected prize E[L] = z?
It’s a straight line, and the slope is given by the relative probabilities
of the two states
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Indifference curves

π

Suppose the agent is risk averse. Where is the set of lotteries which
are indifferent to (z, z)?
That’s not right! Note that there are risky lotteries with smaller
expected prize and which are preferred
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Indifference curves

π

So the indifference curve must be tangent to the iso-expected-prize
line
This is a direct implication of risk-aversion alone
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Indifference curves

π

But risk-aversion does not imply convexity
This indifference curve is also compatibe with risk-aversion

LEC, SJTU Financial Economics 2024 Winter 19 / 44



Indifference curves

π

The tangency implies that the gradient of V at the point (z, z) is
collinear to π

Formally, ∇V(z, z) = λπ, for some λ > 0
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Indifference curves
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Indifference curves
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What we are after: an expected utility representation

So far we have used ordinal utility theory and we now add the idea of
probabilities
We want to represent agent’s preferences by evaluating the expected
utility of a lottery
We need a function v that maps the single outcome xs to some real
number v(xs) and then we compute the expected value of v.
Formally function v is the expected utility representation of V if:

V([x1, π1; . . . ;xS , πS ]) =

S∑
s=1

πsv(xs)

von Neumann and Morgenstern first developed the use of an expected
utility under some conditions- lets look at these briefly
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vNM Axioms: State Independence

von Neumann and Morgenstern’s have presented a model that allows
the use of an expected utility under some conditions
The first assumption is state independence
All that matters to an agent is the statistical distribution of outcomes.
A state is just a label and has no particular meaning and are
interchangeable (as in x and y in the diagram)
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vNM Axioms: Consequentialism
Consider a lottery L whose prizes are further lotteries L1 and L2:
L = [L1, π1;L2, π2]- a compound lottery
We assume that an agent is indifferent between L and a one-shot
lottery with four possible prizes and compounded probabilities
An agent is indifferent between the two lotteries shown in the
diagram below
Agents are only interested in the distribution of the resulting prize but
not in the process of gambling itself

LEC, SJTU Financial Economics 2024 Winter 25 / 44



vNM Axioms: Irrelevance of Common Alternatives

This axiom says that the ranking of two lotteries should depend only
on those outcomes where they differ
If L2 is better than L1 and we compound each of these lotteries with
some third common outcome x then it should be true that
[L2, π;x, 1− π] is still better than [L1, π;x, 1− π]. The common
alternative x should not matter
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vNM Utility Theory - Some Discussion

State-independence, consequentialism and the irrelevance of common
alternatives + the assumptions on preferences give rise to the famous
results of vNM
The utility function V has an expected utility representation v such
that:

V([x1, π1; . . . ;xS , πS ]) =

S∑
s=1

πsv(xs)

The utility function is on the space of lotteries L which represents the
preference relation between lotteries and is an ordinal utility function

▶ V(L) is an ordinal measure of satisfaction and can be compared only in
the sense of ranking lotteries

▶ V is also invariant to monotonic transformations

LEC, SJTU Financial Economics 2024 Winter 27 / 44



vNM Utility Theory - Some More Discussion

The vNM utility function v has more structure
▶ It represents V as a linear function of probabilities
▶ As a result, v is not invariant under an arbitrary monotonic

transformation
▶ It is invariant only under positive affine transformations:

f(x) = a+ bx, a > 0, b > 0

Hence vNM utility is cardinal
Cardinal numbers are measurements that are ordinal but whose
difference can also be ordered

▶ With cardinal utility we can have: v(x1)− v(x2) > v(x3)− v(x4),
meaning that x1 is better than x2 “by a larger amount”than x3 is
better than x4
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Risk-aversion and Concavity-I
The certainty equivalent is the level of wealth that gives the same
utility as the lottery on average. Formally:

v(CE(x)) = E[v(x)]

We can explicitly solve for the CE as: CE(x) = v−1(E[v(x)])
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Risk-aversion and Concavity-II

An agent is risk averse if v is a concave function
Jensen’s inequality: strict convex combination of two values of a
function is strictly below the graph of the function then the function
is concave
The risk premium is therefore positive and the agent is risk averse if v
is strictly concave
If v′′ = 0, then CE(x) = E[x] and the RP = 0 or risk neutrality
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An insurance problem

Consider an insurance problem:
▶ d amount of damage
▶ π probability of damage
▶ µ insurance premium for full coverage
▶ c amount of coverage

max
c

(1− π)v(w − cµ) + πv(w − cµ− (1− c)d)

The FOC of this problem is

1− π

π
· v′(w − cµ)

v′(w − cµ− (1− c)d)
=

d− µ

µ
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An insurance problem

Full coverage (c = 1) implies

1− π

π
=

d− µ

µ
⇒ µ = πd

Full coverage is optimal only if the premium is statistically fair
Suppose the premium is not fair. Let µ = (1 +m)πd, and m > 0 be
the insurance company’s markup. Then, 1−π

π > d−µ
µ . By FOC

v′(w−cµ) < v′(w−cµ−(1−c)d) ⇒ w−cµ > w−cµ−(1−c)d ⇒ c < 1
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An insurance problem

If the insurance premium is not fair, it is optimal not to fully insure
In fact, if the premium is large enough (m0), no coverage is optimal
The FOC, with µ substituted by (1 +m)πd, is

1− π

π
· v′(w − c(1 +m)πd)

v′(w − c(1 +m)πd− (1− c)d)
=

d− (1 +m)πd

(1 +m)πd

We extract m0 by setting c = 0

1− π

π
· v′(w)

v′(w − d)
=

d− (1 +m0)πd

(1 +m0)πd

⇒ m0 =
(1− π)(v′(w − d)− v′(w))

(1− π)v′(w) + πv′(w − d)
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An insurance problem

m0 =
(1− π)(v′(w − d)− v′(w))

(1− π)v′(w) + πv′(w − d)

If µ = (1 +m0)πd, the agent is just indiff between insuring and
carrying the whole risk, when the risk (d) approaching zero
Thus, w − (1 +m0)πd is the certainty equivalent
It is clear that m0 vanishes as the risk becomes smaller, πd → 0

But the relative speed of convergence is not so clear: how fast does
m0 vanish compared to πd?

lim
d→0

m0

πd
= ?
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Absolute Risk Aversion

lim
d→0

m0

πd
= −1− π

π
· lim
d→0

(v′(w)− v′(w − d))/d

(1− π)v′(w) + πv′(w − d)

For symmetric risks (π = 1/2) we thus get

lim
d→0

m0

πd
= −v′′(w)

v′(w)
:− A(w)

This is the celebrated coefficient of absolute risk aversion, discovered
by Pratt and by Arrow
We see here that it is a measure for the size of the risk premium for
an infinitesimal risk
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Absolute Risk Aversion

We define the coefficient of Absolute Risk Aversion (ARA) as a local
measure of the degree that an agent dislikes risk

A(w) :− −v′′(w)

v′(w)

A has many useful properties:
▶ It is invariant under an affine transformation. This means we can use

the ARA then for interpersonal comparisons
▶ Suppose vNM utility function v is more concave than u , then ARA for

v(w) is larger than the ARA for u(w)
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CARA-DARA-IARA

A utility function v exhibits constant absolute risk aversion or CARA
if ARA does not depend on wealth or A′(w) = 0.
v exhibits decreasing absolute risk aversion or DARA if richer people
are less absolutely risk averse than poorer ones or A′(w) < 0.
v exhibits increasing absolute risk aversion or IARA if A′(w) > 0.
What do these mean in economic terms?

▶ Consider a simple binary lottery - you cannot win anything but can lose
$10 with 50% probability

▶ CARA ⇒ millionaire requires the same payment to enter this lottery as
a beggar would

▶ IARA ⇒ millionaire requires a larger payment than the beggar!
▶ DARA ⇒ millionaire takes it for a smaller payment than a beggar -

most realistic case
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Relative Risk Aversion

Consider another simple binary lottery - instead of losing $10 with
50% probability now we have a 50% probability of losing your wealth

▶ For the beggar this amount to losing 50 cents, for the millionaire it
may be in $100,000

▶ Who requires a larger amount up front, in terms of percentage of his
wealth, to enter this gamble? Not easy to answer?

▶ Suppose the millionaire requires $70,000 - this is not unrealistic and
the beggar requires 30 cents - also probable - then the millionaire
requires a larger percentage of his wealth than the beggar ⇒
millionaire is thus more relatively risk averse than the beggar.

This is measured as Coefficient of RRA: R(w) = w ·A(w)

If R is independent of wealth then we call that CRRA utility functions
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Prudence
Coefficients of risk aversion measure the disutility arising from a small
amount of risk imposed on agents or how much an agent dislikes risk
Coefficients do not tell us about how the behavior of agents changes
when we vary the amount of risk the agent is forced to bear

▶ Example: It may be reasonable for agents to accumulate some
”precautionary” saving when facing more uncertainty

▶ More risk induces a more prudent agent to accumulate precautionary
savings

Kimball’s coefficient of absolute prudence:

P (w) = −v′′′

v′′

An agent is prudent if this coefficient is positive
The precautionary motive is important because it means that agents
save more when faced with more uncertainty
Prudence seems uncontroversial, because it is weaker than DARA
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Empirical Estimates

Many studies have tried to obtain estimates of these coefficients using
real-world data
Friend and Blume (1975): study U.S. household survey data in an
attempt to recover the underlying preferences. Evidence for DARA
and almost CRRA, with R ≈ 2

Tenorio and Battalio (2003): TV game show in which large amounts
of money are at stake. Estimate relative risk aversion between 0.6 and
1.5
Abdulkadri and Langenmeier (2000): farm household consumption
data. They find significantly more risk aversion
Van Praag and Booji (2003): survey-based study done by a Dutch
newspaper. They find that relative risk aversion is close to
log-normally distributed, with a mean of 3.78
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Introspection

In order to get a feeling for what different levels of risk aversion
actually mean, it may be helpful to find out what your own personal
coefficient of risk aversion is
You can do that by working through Box 4.6 of the book, or by using
the electronic equivalent available from the website
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Frequently Used Utility Functions

Utility functions that (i) strictly increasing (ii) strictly concave (iii)
DARA or A′(w) < 0 (iv) not too large relative risk aversion
0 < R(w) < 4 for all w are the properties that are most plausible

name formula A R P a b

affine γ0 + γ1y 0 0 undef undef undef
quadratic γ0y − γ1y

2 incr incr 0 γ0/(2γ1) −1
exponential − 1

γ e
−γy γ incr γ 1/γ 0

power 1
1−γ y

1−γ decr γ decr 0 1/γ

Bernoulli ln y decr 1 decr 0 1

A, R, and P denote absolute risk aversion, relative risk aversion, and
prudence. a and b will be explained later
All these belong to the class of HARA functions
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The HARA Class
Most of the plausible utility functions belong to the HARA or
hyperbolic absolute risk aversion (or linear risk tolerance utility
function) class
Define absolute risk tolerance as the reciprocal of absolute risk
aversion, T :− 1/A

u is HARA if T is an affine function, T (y) = a+ by

Merton shows that a utility function v is HARA if and only if it is an
affine transformation of:

v(y) :−


ln(y + a), if b = 1,

−ae−y/a, if b = 0,

(b− 1)−1(a+ by)(b−1)/b, otherwise.

DARA ⇒ b > 0;CARA ⇒ b = 0; IARA ⇒ b < 0, v is CRRA if a = 0.
Most results in finance rely on assumption of HARA utility - whether
these are realistic is another matter.
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